
2 0 1 3 - 0 1 - 1 3 B Y N I M

Repeat after me: MySQL is not a

�lesystem

I came across this gem on DZone this morning. It’s a tutorial on storing images

in a MySQL database (using PHP). There are several things in the tutorial that I

don’t agree with, but I’ll let those slide. What really bugs me, is how it fails to

mention that this is a very bad idea.

A relational database is not a �lesystem. Files go on a �lesystem. Relational

data goes in an RDBMS. Repeat that a couple of times.

The most compelling argument for this, is performance. I did a quick test. I did a

google image search on stupidity and downloaded the �rst 10 images. I then

wrote PHP scripts to serve them up in two ways:

1. From a MySQL (MyISAM) table with 2 columns: ID (int, auto_increment) and

DATA (mediumblob)

2. Using read�le.

The third test method, “FS”, simply loads the image over HTTP directly, without

any intermediary scripts.

The results are the average of running Apache Benchmark 10 times: 10

concurrent requests, 1000 requests per run.

NIM'S NONSENSE
Whispers from the geeky side

Repeat after me: MySQL is not a filesystem – Nim's... https://web.archive.org/web/20181008072846/http://...

1 of 5 24/12/2019, 10:48

As you can see, the MySQL approach is a hell of a lot slower than the more

sensible FS approach.

The best way to store your images (or other binary �les) is on the �lesystem.

Every modern web server does a good (or excellent) job of serving up static

content. Storing them in a database is by far the worst possible solution. Not

only because it’s slow, but also because it complicates database backups:

MySQL dumps with binary data don’t compress very well, causing the whole

database backup to be slower and larger than needs be.

So please, be sensible. Store your �les on a �lesystem.

9 Replies to “Repeat after me: MySQL is not a �lesystem”

E N G L I S H

M YS Q L , P E R F O R M A N C E , P H P

Repeat after me: MySQL is not a filesystem – Nim's... https://web.archive.org/web/20181008072846/http://...

2 of 5 24/12/2019, 10:48

It’s not about where you store images, it’s about your strategy to serve them. You could have

images in the database and use output cache on the web server.

Of course it slows backups, because your are backing up everything, which also simpli�es

backups, only one backup to do, you don’t have to worry about �les.

2 0 1 3 - 0 1 - 1 4 AT 1 5 : 4 0 (U T C)

I agree, having tried this a long time ago. Any time you have a situation where you would need

to “index” an image in a database you are better off to store the image in the �le system and

use the database to store its location (�le name) in a database table and using the location to

perform whatever operations you need to perform on the image.

2 0 1 3 - 0 1 - 1 4 AT 1 8 : 1 3 (U T C)

Good article. I wrote about this topic back in 2011 in response to an increased “chatter” of

storing images into MySQL.

http://www.coderslexicon.com/inserting-images-into-mysql-and-retrieving-them-using-php/

My research came to the same conclusions that large images should be left out of BLOB �elds.

I did notice that if the imagery was small, say around an icon size that most databases handle

this amount fairly well.

However, my stance parallels yours. Leave image data out of it. You gain advantages to having

path data to images as well like being able to search the �le name etc.

Thanks! ��

2 0 1 3 - 0 1 - 1 4 AT 2 2 : 1 3 (U T C)

True. Still doesn’t make MySQL any more of a �lesystem though. When I have the time I might

have a look at the effect of large blobs on overal database performance under load. Might

make for interesting results.

Justin Dalton

Martyr2

Nim

Repeat after me: MySQL is not a filesystem – Nim's... https://web.archive.org/web/20181008072846/http://...

3 of 5 24/12/2019, 10:48

Maybe you want to link data from an existing database with some �les that you can access and

update through a �lesystem interface. For example, storing digital pictures or other content

that like to be seen as a �lesystem and being able to select * from mysqlfs, existingtable…

where JOIN-Condition-Here. IIRC there was a large company playing up how wonderful life

could be when �lesystem queries could be performed using SQL. Can’t recall the name of the

company off the top… microsomething?

2 0 1 4 - 0 8 - 1 1 AT 1 7 : 2 2 (U T C)

Do I understand the results correctly? According to your benchmark on your server, you can

only serve 50 images per second from a db? That is very slow indeed. What sizes were the

images? Did the difference increase with the image size? i.e if you stored tiny images on the db,

did it perform on par with the fs?

2 0 1 5 - 0 8 - 2 5 AT 0 5 : 0 6 (U T C)

hi just so you know mysql CAN be a �lesystem only problem i see is there was never a kernel

level module developed and no one ever bothered to optimize the concept. mostly because it

was slow going tru fuse , userspace , kernel calls and several other level of abstraction …

apparently … (i am being a bit sarcastic here)

having a database as a �lesystem has numerous advantages but people fail to understand

that. it does have big disadvantages if like was said it has to go thru loops just to work the

basics for sure its going to be slow just like anything that has to go thru those same loops. but

in fact with massive amounts of data people acquire these days its actually a mystery why

people are still on �at and in�exible �le systems.

2 0 1 6 - 0 6 - 0 8 AT 1 5 : 3 0 (U T C)

This is an ancient post but I found this searching for “Is storing blobs in rdbms still considered

bad practice”, so my 2 cents:

– The most common use case people consider using a database for storing images or other

blobs is updating dynamic content. The three main problems with using a �lesystem are:

1) If you have many (more than a few thousands of) binary �les, using a �lesystem would

Arthur

spongebob

Xenofon

Repeat after me: MySQL is not a filesystem – Nim's... https://web.archive.org/web/20181008072846/http://...

4 of 5 24/12/2019, 10:48

3) If you have a cluster of web server (the most typical scenario), you either need a clustered

�lesystem (much harder to setup compared to an RDBMS) or you need to synchronize your

updates on your own (very hard to do and has room for inconsistencies).

– The bene�ts of an RDBMS in these areas outweigh the performance issues. Any web app

concerned with performance will have a cache of some sort. It makes much better sense to use

an RDBMS to persist the BLOBs, then the cache to serve them after the 1st time you load them.

– You could ofc use some highly available �le/document server such as S3, but most people

don’t need this complexity and RDBMS should be just �ne. In any case, if RDBMS is not good

enough for you, then a simple �lesystem de�nitely isn’t.

2 0 1 6 - 0 6 - 0 8 AT 1 6 : 3 2 (U T C)

1. It’s true that some �lesystems are slow when directories contain many �les. This is easily

solved, and isn’t any harder to implement than throwing BLOBs at your database.

2. If you’re not backing up your �les, you’re doing something wrong.

3. Again, this isn’t any harder to con�gure than a database cluster. It’s a matter of using the right

tool for the job

The bene�ts of the RDBMS you speak of aren’t bene�ts of an RDBMS at all. And if you’re going

to be introducing a cache layer, then you might as well go the whole distance and serve your

static �les from a separate webserver (such as thttpd). It’ll save you boatloads on memory

and disk space.

Nim

Repeat after me: MySQL is not a filesystem – Nim's... https://web.archive.org/web/20181008072846/http://...

5 of 5 24/12/2019, 10:48

