
MySQL
Multi-Master –

Single-Slave – Replication
(aka Saskia)

Oli Sennhauser (© GNU FDL)

Rebenweg 6
CH – 8610 Uster

Switzerland
oli.sennhauser@bluewin.ch

Introduction
MySQL  provides  its  replication  for  High  Availability 
(HA) and for read Scale-out. Generally it is known that in 
a  MySQL replication  you  can  only  replicate  from one 
Master to many slaves.

It is told, that it is NOT possible to replicate from several 
masters to a single slave. It is also told, that this will be 
solved in future releases of MySQL.

But possibly some MySQL users cannot or do not want to 
wait. Thus we were thinking about a possible simple solu-
tion with MySQL's own tools. The idea behind it is quite 
simple (and thus matches to the KISS concept): One mas-
ter replicates to a simple slave. The second master replic-
ates to an other slave which is connected to the first slave 

through simple FEDERATED TABLES...

The “federated Slave” (SF) can be put on the same server 
as the real Slave (S). From the application point of view 
everything looks transparent. And from the server infra-
structure  it  also  does  not  look  to  complicated.  This 
concept does not work, if you have a write I/O bottleneck 
on the slave server.
Replication  should  not  have  a  problem  with  this 
configuration  and  should  work  as  usual.  If  somebody 
finds any error in this concept, please let me know.

S
F

M
1

S

M
2

M
1

S

M
2

X

M
1

S

M
2

S
F

M

S
1

S
2

S
3

...



Prof of Concept (PoC)
For  proving,  if  this  concept  works,  the following play-
ground was built:

The name is an internal name of my set-up (corresponds 
to the underlying MySQL version).  Because all 4 data-
bases (instances) are running on the same host different 
ports have to be chosen for each database. On both mas-
ters a replication account has to be created. The replica-
tion  account  on  the Slave  (S)  is  used  for  the  FEDER-
ATED tables to propagate the data. To prevent any con-
flicts four different server_id's are chosen as usual for rep-
lication.
On both Masters M1 and M2 two tables are created. One 
table  to  simulate  a  table  which  exists  in  both  masters 
(m_equal) and one table to simulate tables which only ex-
ist on one of both masters (m_t1 and m_t2).
All three tables have to exist on the Slave (S). The tables 
on the federated Slave have to be created differently.

Set-up
Let us start with the two masters: First the server_id and 
binary logging (log_bin) have to be set and the databases 
have to be restarted.
Then the normal replication accounts have to created on 
the masters:

master1> GRANT REPLICATION SLAVE
            ON *.*
            TO 'repl1'@'%'
         IDENTIFIED BY 'repl1';

master2> GRANT REPLICATION SLAVE
            ON *.*
            TO 'repl2'@'%'
         IDENTIFIED BY 'repl2';

This step can be checked as follows:

master1> SHOW VARIABLES LIKE 'server%';
+­­­­­­­­­­­­­­­+­­­­­­­+
| Variable_name | Value |
+­­­­­­­­­­­­­­­+­­­­­­­+
| server_id     | 1     |
+­­­­­­­­­­­­­­­+­­­­­­­+

master1> SHOW MASTER STATUS;
+­­­­­­­­­­­­­­­­+­­­­­­­­­­+
| File           | Position |
+­­­­­­­­­­­­­­­­+­­­­­­­­­­+
| bin_log.000009 |      362 |
+­­­­­­­­­­­­­­­­+­­­­­­­­­­+

master2> SHOW VARIABLES LIKE 'server%';
+­­­­­­­­­­­­­­­+­­­­­­­+
| Variable_name | Value |
+­­­­­­­­­­­­­­­+­­­­­­­+
| server_id     | 2     |
+­­­­­­­­­­­­­­­+­­­­­­­+

master2> SHOW MASTER STATUS;
+­­­­­­­­­­­­­­­­+­­­­­­­­­­+
| File           | Position |
+­­­­­­­­­­­­­­­­+­­­­­­­­­­+
| bin_log.000001 | 98       |
+­­­­­­­­­­­­­­­­+­­­­­­­­­­+

We skip the step to do a proper backup here because we 
only want to prove that the concept works. In fact it is a 
little  bit  trickier  than  setting  up  a  simple  replication 
(mysqldump --skip-add-drop-table, ...). In this area some 
more investigation has to be done.

Now the tables have to be set up. On both masters (M1 

and M2) as well as on the Slave S this table has to be cre-
ated:

mysql> CREATE TABLE m_equal (
    id   INT UNSIGNED NOT NULL AUTO_INCREMENT 
PRIMARY KEY
  , ts   TIMESTAMP    DEFAULT 
CURRENT_TIMESTAMP
  , data VARCHAR(32)
);

On Master 1  (M1) and the Slave (S) the following table 
was created:

mysql> CREATE TABLE m_t1 (
    id   INT UNSIGNED NOT NULL AUTO_INCREMENT 
PRIMARY KEY
  , ts   TIMESTAMP    DEFAULT 
CURRENT_TIMESTAMP
  , data VARCHAR(32)
);

On Master 1  (M1) and the Slave (S) the analog table was 
created:

M
1

- name = 5.1.11
- port = 3315
- user = repl1
- server_id = 1
- tables = m_equal, m_t1

M
2

- name = 5.1.9
- port = 3309
- user = repl2
- server_id = 2
- tables = m_equal, m_t2

S

- name = 5.1.14
- port = 3312
- user = repl3
- server_id = 10
- tables = m_equal, m_t1,
  m_t2

S
F

- name = 5.1.12
- port = 3322
- user = none
- server_id = 20
- tables = m_equal, m_t2



mysql> CREATE TABLE m_t2 (
    id   INT UNSIGNED NOT NULL AUTO_INCREMENT 
PRIMARY KEY
  , ts   TIMESTAMP    DEFAULT 
CURRENT_TIMESTAMP
  , data VARCHAR(32)
);

Now  nearly  everything  is  set  up  except  our  federated 
Slave  (SF).  For  setting  up  the  federated  Slave  we  first 
need an account on the main Slave (S):

slave> GRANT INSERT, UPDATE, DELETE
          ON *.*
          TO 'feed_user'@'%'
       IDENTIFIED BY 'feed_user';

Then the two tables which belong to the Master 2 (M2) 
have to be created in the federated Slave (SF) as FEDER-
ATED tables:

slave_f> CREATE TABLE m_t2 (
    id   INT UNSIGNED NOT NULL AUTO_INCREMENT 
PRIMARY KEY
  , ts   TIMESTAMP    DEFAULT 
CURRENT_TIMESTAMP
  , data VARCHAR(32)
) ENGINE=FEDERATED
CONNECTION='mysql://repl3:repl3@master:3312/t
est/m_t2';

slave_f> CREATE TABLE m_equal (
    id   INT UNSIGNED NOT NULL AUTO_INCREMENT 
PRIMARY KEY
  , ts   TIMESTAMP    DEFAULT 
CURRENT_TIMESTAMP
  , data VARCHAR(32)
) ENGINE=FEDERATED
CONNECTION='mysql://repl3:repl3@master:3312/t
est/m_equal';

Now the slaves can be started as usual:

slave> CHANGE MASTER TO
           master_host='master'
         , master_port=3315
         , master_user='repl2'
         , master_password='repl2'
         , master_log_file='bin_log.000009'
         , master_log_pos=362;

slave> START SLAVE;

slave_f> CHANGE MASTER TO
             master_host='master'
           , master_port=3309
           , master_user='repl2'
           , master_password='repl2'
           , master_log_file='bin_log.000001'
           , master_log_pos=98;

START SLAVE;

Testing
When the set up is finished we can start with some tests:

master1> INSERT INTO m_t1
         VALUES (1, NOW(), 'Bla');

master2> INSERT INTO m_t2
         VALUES (1, NOW(), 'Bla');

slave> SELECT *
         FROM m_t1 t1
         JOIN m_t2 t2 ON t1.id = t2.id;

+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­+­­­­
+­­­­­­­­­­­­­­­­­­­­­+­­­­­­+
| id | ts                  | data | id | ts 
| data |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­+­­­­
+­­­­­­­­­­­­­­­­­­­­­+­­­­­­+
|  1 | 2006­12­20 20:40:48 | Bla  |  1 | 
2006­12­20 20:41:02 | Bla  |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­+­­­­
+­­­­­­­­­­­­­­­­­­­­­+­­­­­­+

A simple INSERT seems to work. :-)

No a little bit more difficult:

master1> INSERT INTO m_equal
         VALUES (1, now(), 'Bla');

master2> UPDATE m_equal
            SET data = 'Bla bla'
          WHERE id = 1;

slave> SELECT *
         FROM m_equal;

+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­+
| id | ts                  | data    |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­+
|  1 | 2006­12­20 16:16:36 | Bla bla |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­+

Also this seems to work correctly (but should NEVER be 
done because master 2 should not know anything about 
row 1). So it looks like everything works like in a normal 
replication...

Transactions
MySQL  supports  transactions  on  FEDERATED  tables 
since release 5.1.  Even transactions seems to work (the 
tables have to be change to InnoDB before):

slave> SELECT * FROM m_t2;
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+
| id | ts                  | data       |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+
|  1 | 2006­12­21 13:45:10 | Trx test 1 |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+

master2> mysql> BEGIN;

master2> INSERT INTO m_t2 VALUES (2, '2006­
12­21 13:49:10', 'Trx test 1');



slave> SELECT * FROM m_t2;
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+
| id | ts                  | data       |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+
|  1 | 2006­12­21 13:45:10 | Trx test 1 |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+

master2> UPDATE m_t2 SET data = 'Trx test 2' 
WHERE id = 1;

master2> COMMIT;

slave> SELECT * FROM m_t2;
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+
| id | ts                  | data       |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+
|  1 | 2006­12­21 13:49:10 | Trx test 2 |
|  2 | 2006­12­21 13:49:10 | Trx test 1 |
+­­­­+­­­­­­­­­­­­­­­­­­­­­+­­­­­­­­­­­­+

Also a rollback works.

Conflicts
Additionally to the usual Master-Master conflicts we also 
have here some other conflict potential:
• AUTO_INCREMENT  and 

NOW()/CURRENT_TIMESTAMP  values  are  not 
propagated  through  the  FEDERATED table.  These 
values get lost and this causes “corrupt data” on the 
Slave  (S).  Auto_increment_increment  and  Auto_in-
crement_offset do not help here. See also Bugs.

• Rows  in  the  shared  table  can  be  deleted  from the 
Master where they never have been inserted (see ex-
ample above). This causes the other master to be out 
of sync and leads to possibly corrupt data.

Recommendations
Accessing  the  same  table  from  different  masters 
(m_equal) is tricky. Errors can creep in which are difficult 
to detect later. So it is recommended to use a shared table 
with care.
On the dedicated tables (m_t1 and m_t2) the AUTO_IN-
CREMENT should work, if the values are in sync. But 
they can easily get out of sync which causes corrupt data.
Using this kind of set-up is pretty dangerous and has to be 
tested very careful.

Limitations
It looks like normal DML (INSERT, UPDATE and DE-
LETE)  works  fine.  DDL  (CREATE  TABLE,  ALTER 
TABLE, etc.) will only work on the Master 1 (M1) chain 
but not on the Master 2 (M2) chain! TRUNCATE TABLE 
on the other hand seems to work properly on both chains.
Each  FEDERATED table creates  a  permanent  database 
connection to the data provider database (at least with re-
lease 5.1.12). This means, that this kind of replication will 
NOT work with too many tables. The limit will be around 
some dozens to some hundreds of federated tables.  But 
this should be sufficient enough for most uses.
For FEDERATED tables and replication the usual restric-

tions and limitations are applicable [1], [2].
SET  statements  are  not  inherited  through  the  FEDER-
ATED storage  engine.  This makes it  impossible to use 
features  like  AUTO_INCREMENT  or  NOW()/CUR-
RENT_TIMESTAMP.
Row based replication, which is new in 5.1 does not work 
in the Master 2 chain.

Outlook
This  kind  of  replication  enables  to  design  much  more 
complex  database  architectures.  It  allows  us  to  model 
some kind of data flows from several different databases 
to some others...

If  someone introduces  such a  construct  in  production I 
would very appreciate it to get some feedback from out 
there...

Thanks to ...
... Ralf Gebhardt,  Saskia Schweitzer and Jens Bollmann 
(who still hangs on an European Airport) for the contribu-
tion.

References
[1] Limitations of the FEDERATED Storage Engine:
http://dev.mysql.com/doc/refman/5.1/en/federated-limita-
tions.html
[2] Replication Features and Known Problems: 
http://dev.mysql.com/doc/refman/5.1/en/replication-fea-
tures.html

Bugs
• #20724, FEDERATED does not honour SET IN-

SERT_ID: http://bugs.mysql.com/bug.php?id=20724
• #20026, FEDERATED lacks support for auto_in-

crement_increment  and  auto_increment_offset: 
http://bugs.mysql.com/bug.php?id=20026

M
2

M
3

S
1

S
2

S
3

S
4

M
1

http://bugs.mysql.com/bug.php?id=20724
http://bugs.mysql.com/bug.php?id=20026

