MySQL Servers Working as a Team - Replication or Galera Cluster

Open Source Data Center Conference, April 26th - 28th, Berlin

Jörg Brühe
Senior Support Engineer, FromDual GmbH
joerg.bruehe@fromdual.com

CC-BY-SA
About Me

• Development distributed SQL-DBMS
 Porting mainframe -> Unix,
 Interface to archiver tools (ADSM, NetWorker)

• MySQL Build Team
 Release builds incl. tests, packaging, scripts, ...

• DBA
 MySQL running a web platform
 (master-master-replication)

• Support-Engineer (FromDual)
 Support + Remote-DBA for MySQL / MariaDB / Percona
 both with and without Galera Cluster
Contents

MySQL Server: Architecture
Binlog
Replication
Galera Cluster
Comparison
Examples / When (not) to Choose Which
General Remarks

- Concepts rather than details: "the forest, not the trees"
- MySQL 5.6 (established GA version)
- Also valid for Percona and MariaDB
- Not applicable to "embedded" MySQL
- Not considered: NDB = "MySQL Cluster"
MySQL Server: Architecture

Binlog

Replication

Galera Cluster

Comparison

Examples / When (not) to Choose Which
Client-Server-DBMS

Client (application)
local or remote

Socket, LAN or internet

Server is separate process, multi-threaded:
1 thread per user session

Disk / SSD, local or SAN
Inside the Server

MySQL ist eine multi-Thread und NICHT eine multi-Prozess Applikation!

Application / Client

Thread Cache

Connection Manager

User Authentication

Command Dispatcher

Query Cache Module

mysqld

Parser

Optimizer

Access Control

Table Manager

Table Open Cache (.frm, fh)

Table Definition Cache (tbl def.)

Query Cache

Handler Interface

MyISAM InnoDB Memory NDB PBXT Aria XtraDB Federated-X ...

MySQL Teamwork: Replication or Galera Cluster, joerg.bruehe@fromdual.com, 2016 April, CC-BY-SA
MySQL Server: Architecture

- Binlog
- Replication
- Galera Cluster

Comparison

Examples / When (not) to Choose Which
Layers + Binlog

SQL layer:
- Parser
- Optimizer
- Privileges
- Query Cache
- ...

Handler Interface

File layer:
- Table Handler
- InnoDB:
 - Row Access
 - Row Locks
 - Recovery
 - ...

Binlog:
All data and schema changes
Binlog

- All data changes executed
- All schema changes executed
- Timestamps
- Essential for Point-in-Time-Recovery "PITR"
- Independent of table handler
- Formats "statement", "row", and "mixed"
- Segments of configurable size
- Numbered sequentially
MySQL Server: Architecture

Binlog

Replication

Galera Cluster

Comparison

Examples / When (not) to Choose Which
MySQL Replication

- Applications communicate with "Master"
- "Master" logs all changes
- "Slave" has identical initial state

- Slave fetches all changes from master and applies them locally

- Replication is running asynchronous
- Slave stops replication on difference
Slave fetches binlog

Slave:
“log-bin = FILE”, or else no binlog
“log_slave_updates = 1” for forwarding

Master:
“log-bin = FILE”, or else no binlog
(no master function)
Typical Usage

- "High Availability"
- Geographic redundancy
- Support higher read load (= "read scale-out")
- Read-only instance(s) e.g. for backup or reports
- Intentional delay is possible
- Filtering (by DB or table) is possible
Replication Cascade

- Recommended: "read-only = 1" on slave
 "log_slave_updates = 1"

- Multiple slaves per master are possible
Entries in Binlog

Original:

- Identification by file name and position
- Replication: "change master to ..." specifying host, port, user, password, file, position
- See also: "mysqldump --master-data"

From MySQL 5.6 also:

- GTID = "Global Transaction ID"
- Replication: "change master to ..." specifying host, port, user, password, "auto_position = 1"
• Overlapping changes are fatal!
Notes about Replication

- Master-Master is controversial, be careful!
- Replication increases read throughput, but not/barely write throughput
- Replication causes file IO and network load
- Format ”row“ is more efficient, but less readable
- Multi-threaded replication since MySQL 5.6, multi-master (”multi-source“) coming in MySQL 5.7
- Big installation: booking.com
- Recommended: datacharmer.blogspot.de (Giuseppe Maxia, August 2015)
MySQL Server: Architecture

Binlog

Replication

Galera Cluster

Comparison

Examples / When (not) to Choose Which
Replication Weaknesses

- Asynchronous
- Asymmetrical
- Only one write node
- Parallel writes may cause breakage
- HA needs failover after node crash
- Each node is SPOF for its slaves, breakdown requires structure change
- Dynamic changes are complicated
Better Alternative

- Synchronous transfer
- Symmetrical cluster
- Write accesses on all nodes
- Distributed conflict analysis and handling
- HA by continuity after node outage
- Dynamic entry / exit of nodes supported
Galera Cluster

Load balancing (LB)

Node 1 Node 2 Node 3
wsrep wsrep wsrep

Galera replication

Inclusiding outage detection and redirection for HA

“Working Set Replication”

Dedicated network preferred

Locale disks, each holding all data

“shared nothing” architecture
Galera Properties (1)

+ Based on InnoDB (due to transactions and rollback)
+ Also transfers user definitions, privileges, ...
+ Quasi-synchronous transfer on commit, check for conflicts, efficient
+ Symmetrical, HA without server failover, quorum
+ No loss of transactions
+ Brings read scale-out, also some write increase
+ Dynamical entry / exit possible, synchronisation is automated
Order of Events

Graph by Vadim Tkachenko (Percona):
http://www.mysqlperformanceblog.com/2012/01/19/percona-xtradb-cluster-feature-2-multi-master-replication/
Galera Properties (2)

- MySQL sources need patching
 (Codership offers binaries, ditto MariaDB and Percona)

- Beware of hot spots (rows)

- Conflict detection is late, full rollback
 (Check postponed till commit)

- Minimum size is 3 nodes

- Synchronisation time for large DB
 (mysqldump -> xtrabackup or rsync)
Certification at Commit

http://galeracluster.com/documentation-webpages/certificationbasedreplication.html
MySQL Server: Architecture
Binlog
Replication
Galera Cluster

Comparison
Examples / When (not) to Choose Which
Team of MySQL Servers

- Alternatives: Replication or Galera Cluster
- Redundancy of machine and storage
- HA
- Scale-out, esp. for read load
- Instances for reports, analysis, backup
- Data available locally (branch offices, ...)

MySQL Teamwork: Replication or Galera Cluster, joerg.bruhe@fromdual.com, 2016 April, CC-BY-SA
Comparison (1)

<table>
<thead>
<tr>
<th>Replication</th>
<th>Galera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>Add-on product</td>
</tr>
<tr>
<td>All handlers</td>
<td>InnoDB only</td>
</tr>
<tr>
<td>Upwards compatible</td>
<td>Same versions</td>
</tr>
<tr>
<td>Minimum 2 nodes</td>
<td>Minimum 3 nodes</td>
</tr>
<tr>
<td>HA by failover</td>
<td>HA without changes</td>
</tr>
</tbody>
</table>

Communication:

<table>
<thead>
<tr>
<th>Hierarchical, chain</th>
<th>Symmetrical, parallel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>Quasi-synchronous</td>
</tr>
<tr>
<td>Delay is configurable</td>
<td>Immediate</td>
</tr>
<tr>
<td>Filtering is configurable</td>
<td>Complete</td>
</tr>
</tbody>
</table>
Comparison (2)

<table>
<thead>
<tr>
<th></th>
<th>Replication</th>
<th>Galera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Read scale-Out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Write unchanged</td>
<td>Write unchanged</td>
<td>Write increased</td>
</tr>
<tr>
<td>1 Master:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1* write</td>
<td>1* write</td>
</tr>
<tr>
<td>Local conflict:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Error on statement</td>
<td>Error on statement</td>
</tr>
<tr>
<td>n Master:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n* write</td>
<td>n* write</td>
</tr>
<tr>
<td>Distributed conflict:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Replication breakdown</td>
<td>Rollback on commit</td>
</tr>
</tbody>
</table>
Comparison (3)

<table>
<thead>
<tr>
<th>Replication</th>
<th>Galera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short interruption:</td>
<td></td>
</tr>
<tr>
<td>Replication resumes</td>
<td>IST (incremental transfer)</td>
</tr>
<tr>
<td>Long interruption:</td>
<td></td>
</tr>
<tr>
<td>Replication resumes</td>
<td>SST (full transfer)</td>
</tr>
<tr>
<td>Structure change:</td>
<td></td>
</tr>
<tr>
<td>Manual / separate Tool</td>
<td>Automatic / dynamic</td>
</tr>
<tr>
<td>Initial setup:</td>
<td></td>
</tr>
<tr>
<td>Snapshot, master remains available</td>
<td>Full transfer, donor may be blocked</td>
</tr>
</tbody>
</table>
CAP Theorem

"For a distributed computer system, it is impossible to simultaneously provide all three of the following guarantees:

- C = Consistency (identical data throughout)
- A = Availability (system is operational)
- P = Partition Tolerance (network outage)"

Prospect: MySQL 5.7

- MySQL 5.7 is GA (5.7.9, 2015-Oct-21)
- Replication like in MySQL 5.6, added: multi-source replication (one slave reading from several masters)
- Codership is working on adding Galera Cluster to MySQL 5.7
- Oracle is working on ”Group replication“, currently available as ”labs release“ (= ”not fit for production“)
MySQL Server: Architecture
Binlog
Replication
Galera Cluster
Comparison
⇒ Examples / When (not) to Choose Which
Galera Cluster:

- Isolated node has no quorum => will not serve applications
- Quorum is at risk!
- Active nodes write ”gcache“ to files, storage period?
- Switch to SST threatens
Replication:

- Master writes log segments to files
- IO-Thread asks to read from binlog position / GTID, retries periodical until successful
- Avoid "purge log"!

Replication is more tolerant than Galera Cluster!
Global Production

Requirement:
Head office (D) and factories (BR, CN, ...) with selective transfer

Solution:
Replication with filtering

manufacturing log information

manufacturing recipes

filtering per manufacturing plant
Parallel Writes + Conflict

Galera:
• Retry of autocommit statements configurable
• Transaction conflict causes rollback
 => Application repeats complete transaction

Replication:
• Slave detects conflict, no contact to application
 => Replication stops

Replication needs admin action on conflict!
Hot Spot

- Replication: frequent aborts
- Galera: frequent rollbacks

=> Agree on a single write node!
High Availability

Replication:

- Failover manual (reaction time) or automated (correct?)
- Slave lag, selection of new master

Galera:

- Symmetrical, no change of roles
- Virtually synchronous replication (no lag)

=> Advantage Galera
Q & A

Questions?
Discussion?

• FromDual provides neutral and independent:
 • Consulting
 • Remote-DBA
 • Support for MySQL, Galera, Percona Server and MariaDB
 • Training

www.fromdual.com/presentations